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Supplementary	notes	

1.	Impact	of	CAD-associated	SNPs	on	proteins.		

In	this	analysis,	we	used	a	panel	of	proteins	that	have	either	a	potential	or	an	established	

link	 to	CVD-related	phenotypes.	We	 therefore	have	 specifically	 assessed	 the	 impact	of	

the	 disease-associated	 SNPs	 on	 these	 proteins.	 To	 do	 so,	 we	 used	 all	 reported	 SNPs	

associated	with	coronary	artery	disease	(CAD)	in	a	recent	paper	by	Nelson	et	al.	 1.	The	

paper	reported	72	known	 loci	 (73	unique	SNPs)	and	a	 list	of	304	suggestive	 loci	 (366	

unique	SNPs),	with	the	latter	partially	overlapping	the	known	ones	and	making	a	total	of	

422	 unique	 CAD-associated	 SNPs.	 We	 then	 performed	 cis-	 and	 trans-pQTL	 analysis	

between	 these	SNPs	and	92	proteins.	At	FDR	<	0.05	 level,	we	 identified	29	 significant	

associations	(12	unique	SNPs,	14	unique	proteins,	Supplementary	Table	4),	 including	

18	trans-pQTLs	at	the	ABO	locus,	a	known	pleiotropic	locus	on	chromosome	9.	

Next,	we	assessed	the	association	between	proteins	and	the	combined	genetic	risk	score	

of	CAD.	We	used	these	two	CAD-associated	SNP	lists,	a	short	list	with	72	established	loci	

and	a	 long	 list	with	304	suggestive	 loci,	and	constructed	a	weighted	genetic	risk	score	

(GRS)	 respectively.	 Plasma	 level	 of	 granulin	 (GRN)	 was	 significantly	 positively	

associated	 to	 the	 GRS	 of	 CAD	 (Padj=5.34x10-7	 for	 the	 GRS	 based	 on	 304	 loci	 and	

Padj=0.001	 for	 the	 GRS	 based	 on	 72	 loci),	 suggesting	 it	 as	 a	 biomarker	 for	 CAD	

development.	

2.	Cis-	and	trans-pQTLs	identify	driver	genes	in	CVD	

Proteins	under	strong	cis	genetic	control	are	potentially	interesting	therapeutic	targets,	

particularly	 when	 the	 cis-pQTL	 SNPs	 are	 also	 associated	 with	 complex	 traits	 and	

diseases.	 For	 example,	 the	 cis-pQTL	 SNPs	 we	 identified	 explain	 up	 to	 73.3%	 of	 the	

variation	in	IL-6RA	levels	and	68.6%	of	the	variation	in	IL-17RA	levels.	The	top	IL-6RA-

associated	 SNP,	 rs2228145	 (rLLD1=0.83;	 P=3.3x10-310),	 is	 a	 missense	 variant	 that	 has	

been	associated	with	cardiovascular	disease	and	many	other	complex	traits	21–24,	and	IL-

6RA	 has	 been	 proposed	 as	 a	 potential	 target	 for	 CVD	 treatment	 25.	We	 also	 detected	

strong	 cis-genetic	 variation	 for	 many	 immune-related	 proteins,	 including	 the	 signal-

regulatory	 protein,	 SHPS1	 (72.1%),	 and	 several	members	 of	 the	 C-C	motif	 chemokine	
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ligands:	 CCL15	 (66.0%),	 CCL24	 (57.3%),	 and	 CCL16	 (56.6%)	 (Supplementary	 Table	

14).	 Some	 pQTL	 SNPs	 are	 also	 associated	 to	 immune-related	 disease	 and	 traits,	

highlighting	their	role	in	complex	diseases.		

Trans-pQTLs	 can	point	 to	 proteins	 involved	 in	 the	 same	biological	 process	 and	 reveal	

putative	 drivers	 of	 these	 pathways.	 The	 strongest	 trans-pQTL	 detected	 in	 our	 dataset	

was	 between	 the	 missense	 SNP	 rs4760	 at	 the	 PLAUR	 gene	 and	 the	 plasma	 level	 of	

TNFRSF10C	(r	LLD1=-0.65;	P=3.8x10-149),	a	 link	consistent	with	previous	observations	11.	

This	effect	explains	42.2%	of	variance	 in	 the	 levels	of	TNFRSF10C.	Further,	pleotropic	

trans-pQTL	 effects	were	 detected	 for	 several	 loci,	 including	 the	ABO,	KLKB1,	ST3GAL6,	

HLA,	 and	FUT2	 loci,	 and	most	of	 these	observations	are	novel	 (Supplementary	Table	

3).	 For	 instance,	 our	 trans-pQTL	analysis	 identified	12	 trans-pQTLs	 for	4	 independent	

SNPs	 in	 the	KLKB1	 locus	 and	 9	 of	 these	mapped	 to	 the	missense	allele	 rs3733402*G,	

which	was	associated	with	higher	levels	of	PCSK9,	NT-pro-BNP,	EPHB4,	OPN,	U-PAR	and	

MEPE	 and	 lower	 levels	 of	 CDH5,	 LTBR	 and	 TFPI	 (Supplementary	 Fig.	 4A).	 These	

proteins	showed	modest	 to	 low	 inter-correlation,	suggesting	a	pleiotropic	effect	of	 the	

KLKB1	locus	(Supplementary	Fig.	4B).	Moreover,	these	proteins	are	physically	located	

in	 GWAS	 loci	 and	 genetic	 variants	 in	 all	 of	 these	 proteins	 are	 linked	 to	 CVD	 and	 its	

related	risk	factors,	including	heart	rate,	blood	pressure,	blood	lipid	level	and	blood	cell	

counts	(Supplementary	Fig.	4C).	Previous	GWAS	analysis	and	pQTL	studies	have	linked	

rs3733402-G	to	high	risk	of	CVD26,	to	higher	circulating	levels	of	two	established	protein	

markers	 for	heart	 failure	 (BNP	and	pro-BNP)27,	 to	higher	 levels	of	 serum	 free	 insulin-

like	growth	factor	1	(IGF-1)27,	and	to	 lower	 levels	of	several	serum	metabolites	28.	The	

KLKB1	 gene	 encodes	 plasma	 kallikrein,	 a	 proteolytic	 enzyme	 known	 to	 cleave	 high-

molecular-weight	 kininogen	 to	 bradykinin	 and	 prorenin	 to	 renin	 29,30.	 Kallikrein	 also	

affects	 other	 vasoactive	 hormones	 such	 as	 endothelin-1	 and	 midregional	

proadrenomedullin	 31.	 Bradykinin	 and	 renin	 are	 key	 enzymes	 in	 vasomotion	 and	 in	

blood	 pressure,	 water,	 and	 salt	 homeostasis	 31.	 The	 SNP	 rs3733402	causes	 an	amino	

acid	substitution,	Asn124Ser,	 in	the	heavy	chain	apple	2	domain	of	kallikrein	32,33.	This	

substitution	 reduces	 kallikrein	 activity	 by	affecting	 its	 binding	 to	 cofactors	 and	

substrates	 34–36.	Therefore,	 the	pleotropic	 trans-pQTLs	we	observed	 in	 the	KLKB1	 SNP	

are	 likely	 mediated	 via	 changes	 in	 kallikrein	 activity,	 a	 mechanism	 which	 has	 been	

suggested	before	31,37,38.	
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3.	Overlap	of	pQTLs	with	eQTLs	

The	low	overlap	between	pQTLs	and	eQTLs	we	observe	is	consistent	with	several	other	

studies	 that	 reported	 a	 low	 correlation	 between	 protein	 and	 transcript	 abundance	 in	

blood	2,3	.	This	discordance	may	be	due	to	factors	such	as	differences	in	tissue	of	origin	

or	 post-transcriptional	 modifications	 when	 variants	 affect	 protein	 levels	 rather	 than	

transcript	abundance,	or	they	may	be	due	to	technical	issues	such	as	differential	protein	

binding.	Given	our	 large	 sample	of	 proteomics	 and	RNA-seq	 expression	data	 from	 the	

same	 individuals	 (n=1,180),	 we	 were	 able	 to	 examine	 expression–protein	 level	

correlation	and	pQTL–eQTL	overlap	in	our	data.		

We	 first	checked	the	correlation	of	plasma	protein	concentrations	with	 the	expression	

levels	 of	 their	 coding	 genes	 determined	 by	 RNA-seq	 profiling	 in	 the	 same	 samples	 in	

whole	blood	4.	We	calculated	Spearman’s	correlation	between	pairs	of	proteins	and	the	

expression	of	 the	corresponding	coding	gene.	At	FDR	0.05	 level,	 significant	correlation	

was	 detected	 for	 a	 total	 of	 26	 gene-protein	 pairs,	 including	 22	 positive	 correlations	

(Supplementary	Table	6).	Most	protein-gene	correlations	were	modest	to	small,	with	

the	 top	 correlations	 observed	 for	 CHIL3LI	 (r=0.35,	 P=9.55x10-36),	 CSTB	 (r=0.24,	

P=2.54.x10-17)	 and	RETN	 (r=0.20,	P=6.78x10-12).	The	discordance	highlights	 the	added	

value	of	the	plasma	proteomics	data	as	well	as	the	other	omics	data	in	blood.		

A	similar	discordance	was	also	observed	at	genetic	effect	level.	We	checked	the	overlap	

of	pQTLs	and	eQTLs	 for	 the	 same	 samples	 and	 found	 that	58	of	129	 (45%)	cis-pQTLs	

have	a	corresponding	eQTL	that	is	significant	at	FDR	0.05,	but	only	38	of	these	58	(66%)	

had	the	same	effect	direction	(Supplementary	Fig.	5).	In	line	with	the	high	correlation	

between	protein	levels	and	transcript	abundance,	the	most	concordant	cis-pQTL	and	cis-

eQTL	pair	was	detected	for	CHI3L1:	rs4950928-G	cis-affected	the	gene	expression	(cis-

eQTL	 Z	 score=-0.21)	 and	 protein	 concentration	 in	 plasma	 (cis-pQTL	 Z=-18.8)	

(Supplementary	Table	2	&	Supplementary	Fig.	5).	To	take	different	tissue	types	into	

account,	 we	 further	 included	 the	 eQTL	 data	 of	 different	 tissue	 types	 from	 the	 GTEx	

project	(version	7)	5.	This	added	25	more	overlapping	eQTLs	and	resulted	in	63	out	of	

83	(76%)	pQTLs	with	a	corresponding	eQTL	overlapping	genetic	effect	on	protein	and	

gene	 expression	 levels	 with	 the	 same	 allelic	 direction.	 Interestingly,	 for	 all	 85	 trans-

pQTLs	 detected	 in	 our	 study,	 we	 did	 not	 find	 concordance	 with	 trans-effects	 at	

transcript	level	either	in	blood	or	in	other	tissues	in	GTEx.	At	the	same	time,	our	trans-

pQTLs	 showed	 88%	 replication	 rate	 with	 published	 trans-pQTLs.	 Overall,	 our	 data	
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indicate	that	the	power	of	trans-effects	is	higher	at	protein	level	than	at	gene	expression	

level.		

4.	Overlap	of	pQTLs	with	mbQTLs.	

To	gain	more	 insight	 into	the	relationship	between	genetic	and	microbial	associations,	

we	systematically	compared	the	overlap	of	pQTLs	and	mbQTLs	previously	reported	by	

Bonder	et	al.	6		

First,	 we	 investigated	 the	 overlap	 between	 all	 genome-wide	 significant	 mbQTLs	 and	

pQTLs.	We	focused	on	all	protein-associated	microbial	factors	and	extracted	26	genome-

wide	significant	mbQTLs	for	9	taxa	and	14	bacterial	pathways.	None	of	the	mbQTL	SNPs	

show	 linkage	disequilibrium	with	 the	 identified	pQTL	 SNPs	 at	 r2	>	 0.8	 level.	 This	 is	 in	

line	 with	 our	 observation	 that	 genetic	 and	 microbial	 associations	 are	 largely	

independent.	 However,	 this	may	 partly	 be	 explained	 by	 insufficient	 power,	 as	 a	 large	

number	 of	 genetic	 variants	 may	 have	 very	 small	 effects	 on	 the	 gut	 microbiome	 that	

remain	to	be	discovered.	

Second,	we	focused	on	31	proteins	that	were	affected	by	both	genetics	and	microbiome	

features	and	 investigated	 the	 impact	of	 their	pQTLs	SNPs	on	 the	microbiome	 features.	

For	these	31	proteins,	we	extracted	their	associations	with	89	pQTL-SNPs	(50	cis-	and	

39	 trans-pQTLs),	 63	 unique	 bacterial	 taxonomies	 (Supplementary	Table	9)	 and	 175	

unique	 bacterial	 pathways	 (Supplementary	 Table	 10).	 We	 further	 compared	 the	

associations	between	these	89	pQTL	SNPs	and	the	bacterial	 taxonomies	and	pathways	

and	reported	a	total	of	18	suggestive	associations	for	7	pQTL	SNPs	at	a	nominal	P-value	

0.05	level	(Supplementary	Table	11).	These	include	three	trans-pQTL	of	Ep-CAM	at	the	

FUT2	locus	affecting	six	taxonomies	and	three	pathways	and	two	cis-pQTL	SNPs	of	PON3	

affecting	one	 taxonomy	and	 five	pathways.	Moreover,	 two	microbial	associations	were	

found	 for	 a	 cis-pQTL	 SNP	 of	 PAI	 and	 one	 association	 for	 cis-pQTL	 of	 CHI3L1.	

Interestingly,	 these	 proteins	 are	 among	 the	 top	 proteins	 associated	 with	 the	 gut	

microbiome.	 The	 strongest	 association	 was	 observed	 between	 the	 FUT2	 locus	 and	

Blautia,	 an	 association	 which	 has	 been	 replicated	 in	 many	 other	 studies	 (see	 the	

discussion	 in	 the	main	 text).	 Other	 associations	 between	 pQTLs	 and	microbial	 factors	

need	to	be	further	validated.	

Third,	 we	 further	 investigated	 to	 what	 extent	 the	 associations	 between	 protein	 and	

microbiome	could	be	influenced	by	genetic	effects.	We	recalculated	microbiome-protein	

associations	after	regressing	out	all	genome-wide	significant	mbQTLs	and	pQTLs,	i.e.	26	
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mbQTLs	and	224	pQTLs	(Supplementary	Tables	12	&	13).	The	association	strengths	

before	and	after	correction	 for	genetic	effects	were	very	comparable	(Supplementary	

Fig.	8).	The	top	difference	was	observed	for	the	negative	association	between	Ep-CAM	

and	 the	 superpathway	 of	 L-phenylalanine	 and	 L-tyrosine	 biosynthesis	 (PWY-3481).	

After	 regressing	 out	 the	 pQTLs	 and	mbQTLs,	 the	 correlation	 coefficient	 of	 association	

increased	from	-0.1	(P=8.9x10-4)	to	-0.15	(P=4.1x10-6).		

Altogether,	 the	 impact	 of	 pQTLs	 on	 microbial	 factors	 and	 on	 protein-microbial	

associations	was	mostly	negligible.	

5.	 Assessment	 of	 the	 independent	 and	 additive	 effects	 of	 genetic	 and	

microbial	factors	on	plasma	proteins	

Next,	we	compared	the	total	explained	variance	in	proteins	using	two	different	models.	

Model	1	assumes	 that	 the	genetic	and	microbial	 factors	were	completely	 independent,	

i.e.	the	total	explained	variation	could	be	estimated	by	summing	the	variation	explained	

by	genetic	 factors	 (Vg	=	Vcis	+	Vtrans)	and	microbial	 factors	 (Vm)	using	 two	separate	

models.	Model	2	assumes	the	genetic	and	microbial	factors	were	not	fully	independent,	

i.e.	the	total	explained	variation	(Vt)	was	estimated	by	a	combined	model	including	both	

genetic	and	microbial	factors.	The	difference	between	the	two	models	would	indicate	to	

what	extent	the	genetic	effects	and	microbial	effects	were	independent	or	confounding.	

We	 observed	 a	 very	 high	 concordance	 between	 the	 two	models	 (r=0.99,	 P=0),	 which	

suggests	genetic	and	microbial	effects	are	 independent	 for	most	proteins.	The	greatest	

difference	between	our	two	models	was	for	intestinal	epithelial	protein	Ep-CAM,	where	

1%	of	the	total	variation	in	Ep-CAM	may	be	due	to	a	confounding	effect	of	genetic	and	

microbial	factors.		

To	 further	 study	 the	 dependency	 between	 genetic	 and	microbiome	 effects	 on	 protein	

levels,	we	searched	for	interactions	between	SNP	genotypes	and	microbial	factors.		

We	detected	21	nominally	significant	(P	<	0.05)	genome-microbiome	interactions	for	8	

proteins	 (Supplementary	Table	15):	 one	 interaction	 each	 for	 CNTN1,	 CHI3L1,	 CTSZ,	

PON3,	 IL6-RA,	 PSP-D,	 TLT-2	 and	 14	 significant	 interactions	 for	 Ep-CAM.	 For	 these	

proteins,	 the	 associations	between	microbiome	 feature	and	protein	 level	differ	 among	

genotypes.	 For	 example,	 the	 vitamin	 B1	 pathway	 (PWY−7357:	 thiamin	 formation)	 is	

only	 significantly	 correlated	with	PON3	 in	 rs10953142	C/C	 genotype	 individuals.	One	

study	 has	 reported	 a	 decrease	 in	 HDL	 cholesterol	 after	 six	 months	 of	 thiamin	

supplementation	 7,	which	 aligns	with	 our	 observation	 of	 positive	 association	 between	
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PON3	and	HDL	 (see	main	 text).	 Ep-CAM	 is	negatively	 associated	with	many	beneficial	

bacteria	and	pathways,	including	Bifidobacterium,	the	Peptostreptococcaceae	family	and	

the	 Coenzyme	B	 synthesis	 pathway.	However,	 this	 association	 seems	 to	 have	 a	 larger	

effect	in	homozygous	individuals	for	the	SNPs	in	the	FUT2	locus.	

Through	explained	variance	estimation	and	interaction	analysis,	we	found	that	genetics	

and	microbiome	affect	protein	 levels	mainly	 in	an	additive	manner.	However,	our	data	

also	 provides	 evidence	 for	 functional	 interactions	 between	 host	 and	microbiome	 that	

affect	plasma	protein	concentrations.	
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